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Abstract

This paper presents the formalization and empirical validation of the Dimensional Loss
Theorem, a universal principle governing the degradation of binary discrete patterns when
embedded from 2D planes into 3D lattice volumes. Building upon prior empirical observa-
tions of an 86% scaling law, component-wise proofs are provided for the S (Connectivity),
R (Volumetric), and D (Entropy) transformations. The connectivity tax is demonstrated
to be a geometric invariant of Moore neighborhoods. Applying this framework to the final
layers of GPT-2 and Gemma-2, numerical verification confirms exact component transfor-
mations (0.000% implementation error) while empirical validation demonstrates 84.39% =+
1.55% total information loss across N = 60 patterns. Furthermore, the semantic invariance
property is established, proving that topological information loss is content-independent,
demonstrating that geometric stress testing cannot distinguish between veridical and hal-
lucinatory content. These findings provide a theoretical basis for the concept clarity peaks
observed in recent transformer architecture studies. Complete validation data and code are
available at DOI: 10.5281/zenodo.18319430.

1 Introduction

The persistence of information across dimensional boundaries is a fundamental concern in both
complexity science and computational theory. Prior work [1] identified an empirical “86% Scal-
ing Law” where cellular automata patterns suffered a near-total collapse of structural integrity
upon 2D—3D embedding. While that work established the phenomenon, and subsequent frame-
works defined the threshold for pattern existence in binary systems [2], a rigorous analytical
proof of the components of this loss has remained elusive.

This paper provides that proof. Integrated information (denoted ®) is decomposed into
three constitutive components: connectivity (5), volumetric density (R), and distributional
entropy (D). By applying this theorem to the internal attention maps of Large Language
Models (LLMs), it is demonstrated that the loss is not merely an artifact of simulation but a
fundamental geometric constraint that explains the performance divergence between internal
representations and output states in modern transformers.
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2 Theoretical Framework

2.1 Defining Integrated Pattern Information

To quantify the structural integrity of a discrete pattern, the ® metric is defined as the sum of its
relational and distributional components. We adopt the symbol ® following Tononi’s Integrated
Information Theory [7], though our metric differs fundamentally: Tononi’s ® measures conscious
integration in neural systems through cause-effect structures, while ours quantifies geometric
pattern persistence in discrete lattices through connectivity and entropy.

Definition 1. The integrated pattern information ® for a binary discrete system is defined as:
&= (R-S)+D (1)
where:

e R is the volumetric density (active cells / total cells).

e S is the system integration, calculated as S = W where k s the netghborhood

size (8 for 2D Moore, 26 for 3D Moore).

o D is the disorder, given by Shannon entropy: D = H(R) where H(p) = —plogy(p) — (1 —
p)logy(1 = p).

This functional form is motivated by three information-theoretic principles:

Principle 1 (Multiplicative Interaction): Density (R) and connectivity (S) interact
multiplicatively because pattern coherence requires both active cells and their structural relation-
ships. A pattern with high density but zero connectivity (isolated points) or high connectivity
but zero density (empty lattice) contains no integrated structure. The product R-S captures this
necessary co-dependence: structural information exists only when both components are non-zero.

Principle 2 (Additive Independence): Entropy (D) contributes additively because dis-
tributional uncertainty is fundamentally independent of topological connectivity. Shannon en-
tropy (6] quantifies information content based solely on probability distributions, not spatial
relationships. The additive structure ® = (R-S)+ D separates relational information (topology-
dependent) from distributional information (topology-independent).

Principle 8 (Dimensional Invariance): Each component (R, S, D) transforms inde-
pendently under dimensional embedding, as proven in Theorems 1-2 and Corollary 1. This
separability validates the decomposition: if the components were inseparable, their transforma-
tions would not follow independent geometric laws.

These principles yield the integrated pattern information metric as the sum of structural
coherence (R -S) and distributional complexity (D).

2.2 The Dimensional Loss Theorem

A binary discrete pattern P is considered, defined on a 2D Moore neighborhood lattice of size
N x N. The pattern is embedded into a 3D lattice of N x N x N via middle-slice placement at
z=[N/2].

2.2.1 Component-Wise Transformations

Theorem 1 (S-Component: Connectivity Tax). For a 2D pattern embedded into a 3D Moore
neighborhood lattice via middle-slice placement, the connectivity integrity S is reduced by exactly
18/26 =~ 69.23%.



Proof. In a 2D Moore neighborhood, each active cell has up to 8 immediate neighbors. The
S-component is calculated as:
Z;N:afnve ni (2)
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where n; is the number of active neighbors of cell 7, and N¢tive is the total number of active
cells.

Upon embedding into 3D via middle-slice placement, the Moore neighborhood expands to
26 neighbors (8 in-plane, 9 above, 9 below). However, since the pattern occupies only a single
z-slice, each active cell retains the same n; in-plane neighbors, but the normalization constant
changes from 8 to 26:
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Since the numerator (total neighbor connections) remains identical, we can compute the

ratio:
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Therefore S3p = %SQ D, and the connectivity loss is:
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This is an exact geometric constant independent of pattern content.

Sap =
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Theorem 2 (R-Component: Volumetric Dilution). The volumetric density R of a 2D pattern
P embedded in a 3D lattice of depth N scales by exactly 1/N.

Proof. Let the 2D pattern occupy nactive cells in an N x N grid. Then:

Nactive
Ropy = "1 (6)

In a 3D N x N x N cube, the same nactive cells occupy a single z-slice:
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Corollary 1 (D-Component: Entropy Dilution). The distributional entropy D of the embedded
system follows directly from Shanmon’s entropy formula applied to the diluted density.

Proof. By definition, D = H(R) where H(p) = —plogy(p) — (1 — p) logy(1 — p) is the Shannon
binary entropy. Since Rsp = Rop/N (Theorem 2), we have:

Dsp = H(R3p) = H (R;ID> (8)

The entropy transformation follows directly from the density dilution.

2.3 Main Result: Total Information Loss

Theorem 3 (Dimensional Loss). For a binary pattern embedded from 2D to 3D via middle-slice
placement in an N x N xX N lattice, the integrated information ratio is:

R 4 R
(I)SD _ <% . ﬁS2D) +H <%) (9)
®2p (R2p - S2p) + H(R2p)
Proof. Direct substitution of Theorem 1 (S3p = %SQD), Theorem 2 (R3p = R?TD), and Corol-
lary 1 (Dsp = H(RQTD)) into the definition ® = R - S + D yields the result.




3 Numerical Verification and Empirical Validation

Validation was conducted using GPT-2 (124M) [4] and Gemma-2-2B-IT [5]. Attention weights
were extracted from the final layer of each model (N = 60 sentences: 30 veridical factual
statements, 30 confident hallucinations). Binarization at the 90th percentile resulted in an
average density of Rop = 10.06%. Grid sizes ranged from 8 to 18 tokens (mean N = 10.9).

3.1 Component Transformation Verification

The component transformations (Theorems 1-2, Corollary 1) are mathematical identities that
follow directly from the definitions of S, R, and D under the specified embedding procedure.
Numerical verification confirms correct implementation of these definitions:

Table 1: Numerical Verification of Component Transformations

Component Predicted Transformation Implementation Error

S-Component ~ S3p = 7552p 0.000% + 0.000%
R-Component Rsp = Rop/N 0.000% =+ 0.000%
D-Component Dsp = H(Ryp/N) 0.000% =+ 0.000%

These 0.000% errors are expected, as they verify that the computational implementation
correctly applies the mathematical definitions. This is numerical verification of the implemen-
tation, not empirical validation against noisy phenomena.

3.2 Empirical Validation of Total Information Loss

The total ® loss prediction (84-86% for typical parameter ranges) represents genuine empirical
validation, as it combines the component transformations in a non-trivial way through the
® = R-S+ D formula and exhibits variance across patterns:

Table 2: Empirical Validation of Total Information Loss

Metric Result
Theoretical Prediction (Range) 84-86%
Observed Mean Loss 84.39% + 1.55%
Sample Size N = 60 patterns

The observed total information loss of 84.39% falls within the theoretically predicted range,
with variance attributable to differences in grid size N and initial density Rep across patterns.
This confirms the theorem’s predictive power for real neural attention patterns.

3.3 Semantic Invariance

Corollary 2 (Semantic Invariance). For patterns sharing identical lattice constraints (N, k,
topology), the geometric loss of ® is independent of semantic content.

Theoretical and Empirical Support. The component transformations (Theorems 1-2, Corollary
1) depend only on geometric parameters (kK = 8 — 26, volumetric factor 1/N, topology), not on
the semantic meaning of patterns. Empirical validation confirms this property: truth-related
patterns suffered an average loss of 84.53%, while hallucination patterns suffered 84.25%. A
two-sample t-test confirms no statistically significant difference (p = 0.478, N = 60, Cohen’s
d = 0.18). This demonstrates that geometric stress testing is fundamentally incapable of dis-
tinguishing semantic validity from structural integrity.
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Figure 1: Numerical verification and empirical validation across 60 neural attention patterns.
Top left: S-component transformation showing exact alignment with the 4/13 scaling (verifi-
cation of implementation). Top right: R-component showing exact 1/N dilution (verification
of implementation). Bottom left: D-component entropy transformation following Shannon
formula (verification of implementation). Bottom right: Total information loss distribution
centered at 84.4%, empirically validating the combined theorem prediction of 84-86%.

4 Discussion: Potential Connection to Transformer Architec-
tures

Recent observational work by Aragon (2026) identified a clarity peak at Layer 2 of transformer
models (97.5% concept accuracy) followed by progressive degradation toward the output layer
(23% accuracy) |3]. We hypothesize that the transition from optimal 2D attention representa-
tions at intermediate layers to higher-dimensional embeddings in subsequent layers may trigger
losses consistent with the Dimensional Loss Theorem.

While speculative, this observation suggests a testable prediction: if attention mechanisms
at intermediate layers operate in effective 2D subspaces where semantic concepts achieve max-
imum structural clarity, subsequent dimensionality increases would necessarily degrade inte-
grated information by the percentages predicted in Theorem 3. Future work should investigate
layer-by-layer dimensional scaling in transformer architectures to validate this hypothesis rig-
orously. The current sample size (N = 60) represents a preliminary validation; larger-scale
studies are needed to establish generalizability across model architectures and tasks.

5 Conclusion

This work transforms the empirically observed 86% Scaling Law into a rigorously proven geo-
metric theorem with three exact component transformations. The Semantic Invariance property
(Corollary 2) establishes fundamental limits for purely topological interpretability methods, as



geometric metrics cannot distinguish semantic validity from structural integrity. The theoretical
framework provides a mathematical foundation for understanding information flow constraints
in discrete lattice systems, with direct applications to neural network interpretability and com-
plexity science.

Data Availability

The validation datasets (60 GPT-2 and Gemma-2 attention patterns), verification code, and
analysis scripts are openly available on GitHub at https://github.com/existencethreshold/
dimensional-loss-theorem and archived on Zenodo at DOI: 10.5281/zenodo.18319430. The
repository includes:

e dimensional _stress_data.csv: Complete validation dataset with all & components for
2D and 3D embeddings

e verification script.py: Main validation code implementing the neighbor-sum method
for S-component calculation

e validate from csv.py: Direct validation from saved data

e test_sentences.py: The 60 test sentences (30 veridical/30 hallucinations)
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