

Pattern Loss at Dimensional Boundaries: The 86% Scaling Law

Nathan M. Thornhill

Independent Researcher

Email: existencethreshold@gmail.com

ORCID: [0009-0009-3161-528X](https://orcid.org/0009-0009-3161-528X)

Reproducibility Package: <https://github.com/existencethreshold/dimensional-boundary-loss>

DOI: [10.5281/zenodo.18262424](https://doi.org/10.5281/zenodo.18262424)

“To Exist Is To Continually Overcome Loss.” — Nathan M. Thornhill

Abstract

Information degrades predictably when crossing dimensional boundaries—from DNA’s 1D code building 3D proteins to neural networks transforming data across dimensional spaces—yet this fundamental cost has never been quantified. While the “curse of dimensionality” describes problems qualitatively and dimensionality reduction techniques project high-dimensional data to lower dimensions, no prior work has measured information loss during the embedding of discrete patterns from dimension N to dimension $N + 1$. This study introduces the Φ metric ($\Phi = R \cdot S + D$), which decomposes pattern information into structural (spatial organization) and statistical (state distribution) components. Using middle-placement embedding in cellular automata grids as controlled computational environments, 1,500 random binary patterns were systematically embedded across five grid sizes through three dimensional transitions: **1D → 2D, 2D → 3D, and 3D → 4D**. For each pattern, information retention was measured using Φ before and after embedding. Robust information loss of $86.01\% \pm 2.39\%$ is observed across all dimensional transitions, with a remarkably low coefficient of variation of 2.8% across 1,500 patterns. Component analysis reveals that structural information ($R \cdot S$) collapses by 99.6% while statistical information (D) decreases by 82–83%, explaining the overall 86% loss through near-total destruction of spatial organization accompanied by partial preservation of state distributions. After initial embedding, Φ stabilizes at approximately 0.169, suggesting an information floor for sparse patterns in higher dimensions. Robustness tests confirm the finding holds across grid sizes (15–25) with weak scale-dependence (+0.6% per unit increase in N), and is consistent across tested cellular automata rule variants (*Conway’s Life* B3/S23 and *HighLife* B36/S23 differ by only 0.64%). The effect represents a fundamental property of middle-placement dimensional embedding geometry for randomly generated binary patterns in cellular automata grids, rather than pattern-specific or rule-specific behavior within this framework. These findings establish theoretical efficiency bounds for machine learning representations, quantify the curse of dimensionality in physics, and provide a scaling law for complexity science. By delivering the first quantitative measurement of information dynamics at dimensional boundaries, this work reveals dimensional transitions as sites of predictable information transformation in discrete computational systems.

1 BACKGROUND AND RELATED WORK

This section establishes the foundational context for the novel quantification of information loss during dimensional embedding. It reviews pertinent fields, including dimensionality reduction, neural scaling laws, the curse of dimensionality, cellular automata, and information theory, clarifying how existing research addresses distinct problems or offers qualitative insights. The current work specifically addresses a previously unquantified gap concerning the precise measurement of information loss at discrete dimensional boundaries.

1.1 Dimensionality Reduction

High-dimensional data often poses significant challenges for visualization, analysis, and computational efficiency. Techniques such as Principal Component Analysis (PCA), introduced by Pearson (1901) [1], aim to reduce data dimensionality by identifying orthogonal linear combinations of variables that capture the greatest variance, effectively projecting data onto a lower-dimensional subspace while preserving its principal structural components. More sophisticated non-linear methods include t-distributed Stochastic Neighbor Embedding (t-SNE), developed by Van der Maaten & Hinton (2008) [2], which focuses on preserving local data structure and neighborhood relationships in lower dimensions, and Uniform Manifold Approximation and Projection (UMAP), presented by McInnes et al. (2018) [3], which constructs a fuzzy simplicial set representation of the high-dimensional data and then optimizes a low-dimensional graph to be as structurally similar as possible. These methods are indispensable tools for data exploration, visualization, and noise reduction. For comprehensive reviews of dimensionality reduction techniques, see Jolliffe (2002) [11] and Hinton & Salakhutdinov (2006) [12].

Critically, these established dimensionality reduction methods operate on the principle of projecting high-dimensional data into lower-dimensional spaces, primarily with the goal of preserving salient features and reducing computational overhead. This is fundamentally the inverse operation to the phenomenon investigated in this study. The research focuses on the embedding of discrete patterns from a lower dimension (N) to an adjacent higher dimension ($N + 1$), examining the inherent information transformations during this upward transition.

1.2 Neural Scaling Laws

The field of artificial intelligence has seen significant progress underpinned by empirical observations regarding model performance. Neural scaling laws, particularly those formalized by Kaplan et al. (2020) [4], describe predictable power-law relationships between a neural network's performance and factors such as its size (number of parameters), the amount of training data, and the computational budget. These laws suggest that for large language models and other deep learning architectures, performance tends to improve predictably as these resources are scaled up. More recently, “Chinchilla” scaling, proposed by Hoffmann et al. (2022) [5], refined these observations, indicating an optimal balance between model size and training data quantity for achieving state-of-the-art performance.

This investigation, however, addresses a distinct domain entirely orthogonal to the concerns of neural scaling laws. While neural scaling laws quantify the relationship between model resources and performance within a fixed-dimensional representational space, this work quantifies information loss inherent in the process of *transiting* between different geometric dimensions (e.g., from 1D to 2D, or 2D to 3D). Model parameters, training data, and computational efficiency are not analyzed; instead, the focus is on measuring fundamental informational changes that occur when discrete patterns are

structurally embedded from dimension N to $N + 1$, irrespective of any learning algorithm or model architecture.

1.3 Curse of Dimensionality

The “curse of dimensionality,” a qualitative concept coined by Bellman (1961) [6], describes a collection of phenomena that arise when analyzing and organizing data in high-dimensional spaces. As the number of dimensions increases, the volume of the space grows exponentially, causing data points to become extremely sparse. This sparsity renders traditional statistical and machine learning methods less effective, as the distance metrics used to evaluate similarity or proximity between data points lose their discriminatory power, making all points appear equidistant. Donoho (2000) [13] provides a modern treatment of high-dimensional data challenges.

Crucially, while Bellman’s conceptualization vividly describes the *problems* and *qualitative challenges* associated with increasing dimensionality, it does not provide any quantitative measure of information loss during dimensional transformations. The curse of dimensionality illustrates the practical difficulties arising from data sparsity and geometric distortion in high-dimensional spaces, but it offers no formal metric for the informational integrity of patterns as they are embedded or translated across dimensional boundaries. This work directly addresses this critical gap, providing the first rigorous, quantitative measurement of information loss—specifically, approximately 86%—that consistently occurs during each discrete embedding transition from dimension N to dimension $N + 1$.

1.4 Cellular Automata and Complexity

Cellular Automata (CA) represent a foundational paradigm for studying complex systems. Wolfram (2002) [7] extensively classified CA behaviors into four universality classes, ranging from stable fixed points to complex emergent behaviors and even universal computation. Building on this, Langton’s (1990) [8] seminal work on the λ -parameter revealed a critical phase transition, often termed the “edge of chaos,” where CA systems exhibit the most complex and robust information processing capabilities. Conway’s Game of Life (Gardner, 1970 [33]; Berlekamp et al., 2001-2004 [34]) and proofs of computational universality in CA (Cook, 2004 [14]) demonstrate the rich computational capabilities of these simple systems.

However, the extensive research conducted within the cellular automata framework predominantly focuses on understanding temporal evolution, emergent complexity, and information propagation *within* a defined, fixed-dimensional space. This work diverges significantly by investigating the specific information loss that occurs *across* dimensional boundaries. It does not study the dynamic evolution of patterns on a fixed lattice but rather the transformation of discrete patterns as they are embedded from a lower spatial dimension to an adjacent higher spatial dimension.

1.5 Information Theory Foundations

The bedrock of modern information science was laid by Shannon (1948) [9], who introduced the concept of entropy as a fundamental measure of uncertainty or randomness in a probability distribution. Shannon entropy provides a robust framework for assessing the complexity and predictability of sequences and patterns. Building on these principles, Tononi (2004) [10] developed Integrated Information Theory (IIT), proposing Φ (Phi) as a quantitative measure of consciousness, specifically of the integrated information generated by a system.

The novel Φ metric employed to quantify information loss at dimensional boundaries builds directly upon these profound information-theoretic foundations established by Shannon and refined

by Tononi. While Shannon provided the fundamental tools for measuring information content and uncertainty, and Tononi applied integration measures to understand consciousness within complex systems, this research innovatively applies these foundational concepts to a new and distinct problem domain: the rigorous quantification of information transformation during geometric dimensional embedding. For comprehensive treatments of information theory, see Cover & Thomas (2006) [27]. Updated IIT frameworks are presented in Tononi et al. (2016) [15] and Oizumi et al. (2014) [21].

1.6 Gap in Literature

Despite extensive research across various disciplines concerning data dimensionality, complexity, and information processing, a significant gap persists in the scientific literature. While the “curse of dimensionality” qualitatively describes challenges in high-dimensional spaces, and various methods exist for projecting data *down* in dimensions while preserving structure, no prior rigorous quantitative research has systematically measured the inherent information loss that occurs when embedding discrete patterns *upward*—that is, from a lower dimension N to an adjacent higher dimension $N+1$. This contribution directly addresses and fills this fundamental void in the scientific understanding of dimensional transitions. Through a rigorous application of information-theoretic principles and a novel Φ metric, the first quantitative measurement of this universal phenomenon is provided: an approximate 86% loss of information consistently occurs when discrete patterns are embedded from dimension N to dimension $N+1$.

2 INTRODUCTION

Dimensional boundaries represent fundamental interfaces across a vast spectrum of scientific inquiry, defining the constraints and possibilities within disparate fields from theoretical physics to practical engineering. In the realm of physics, the three-dimensional spatial continuum we inhabit shapes our understanding of cosmic structures, gravitational interactions, and particle behaviors, implicitly underscoring the profound influence of dimensionality on observed phenomena (Tegmark, 2014) [19]. Concurrently, in computational disciplines such as machine learning, data representations frequently traverse various dimensional spaces—from one-dimensional word embeddings that capture semantic relationships to intricate high-dimensional latent spaces encoding complex features (Goodfellow et al., 2016 [17]; LeCun et al., 2015 [18]), necessitating transformations across these boundaries. Biological systems offer another compelling illustration, where the linear, one-dimensional genetic code encapsulated within DNA orchestrates the assembly of complex, three-dimensional protein structures (Alberts et al., 2014) [16], embodying a crucial dimensional transition. Despite this pervasive presence and foundational role across numerous domains, a rigorous, quantitative understanding of the intrinsic information cost associated with these dimensional transitions has, until now, remained elusive.

Dimensional Cascade: Information Loss at Boundaries

Figure 1: Conceptual overview of dimensional embedding and information loss. A 1D pattern (top) embedded in a 2D grid (middle) occupies only $1/N$ of available space, resulting in dilution of both density (R) and spatial organization (S). The pattern settles into a low-information state ($\Phi \approx 0.169$) that persists across subsequent dimensional increases (bottom).

While the conceptual challenges posed by high-dimensional spaces have been qualitatively recognized through notions like the “curse of dimensionality” (Bellman, 1961) [6], existing literature lacks a systematic investigation and quantitative measurement of information dynamics in the inverse process: the embedding of discrete patterns from a lower-dimensional space (N) into an adjacent higher-dimensional space ($N + 1$). This distinction is paramount. Unlike dimensionality reduction, which selectively retains information during projection, the embedding process fundamentally alters the spatial context and relational structure of a pattern. Consequently, the information loss inherent in this specific directional transition—from fewer to more dimensions—has not been subjected to rigorous quantification.

Quantifying the precise effects that manifest at dimensional boundaries carries profound implications across a diverse array of scientific and technological domains. In machine learning, for instance, a quantitative understanding of information retention during dimensional embedding could establish theoretical efficiency bounds for representation learning algorithms. For physics, such quantification could contribute to understanding the informational cost associated with physical projections or even inform speculative theories concerning the fundamental informational structure of space-time. Within complexity science, establishing universal scaling laws for dimensional transitions, particularly regarding information loss, would provide a powerful framework for analyzing emergent properties and the resilience of information across different levels of system organization (Mitchell, 2009) [20].

This investigation addresses this critical gap by systematically exploring the information dynamics at dimensional boundaries. Discrete computational patterns, specifically cellular automata grids, are employed as highly controlled and reproducible environments for the experiments. To quantitatively assess information retention, a novel metric, Φ (Phi) = $R \cdot S + D$, is introduced. This metric is designed to meticulously decompose the total information content of a pattern into two distinct and measurable components: a structural component ($R \cdot S$), which captures the spatial organization and relational complexity of the pattern, and a statistical component (D), which quantifies the underlying state distributions and local entropy. Using this robust framework, random binary patterns, generated to ensure maximal initial entropy, were systematically embedded from N to $N + 1$ dimensions. Across an extensive dataset comprising 1,500 distinct patterns, systematically sampled and analyzed across three fundamental dimensional transitions—specifically, $1D \rightarrow 2D$, $2D \rightarrow 3D$, and $3D \rightarrow 4D$ —a remarkably consistent and universal information loss averaging

$86.01\% \pm 2.39\%$ is observed. The exceptionally low between-transition variation, with a coefficient of variation (CV) consistently below 2.8%, serves as compelling evidence that this $\sim 86\%$ information loss is not an idiosyncratic feature of specific patterns or particular dimensional transitions. Instead, it strongly indicates a fundamental, inherent property of the dimensional embedding process itself. This effect demonstrates remarkable robustness across several parameters: it is scale-independent, holding consistently for various grid sizes ranging from 15x15 to 25x25 cells, indicating that the phenomenon is not an artifact of spatial resolution. Furthermore, it exhibits rule-independence, as evidenced by a minimal difference of only 0.64% in information loss when comparing complex systems like Conway’s Game of Life and HighLife cellular automaton rules.

Further theoretical analysis, leveraging the decomposed nature of the Φ metric, provides critical insight into the observed 86% information loss. Findings reveal a profound asymmetry in how different components of information are affected during dimensional embedding. Specifically, the structural information ($R \cdot S$), which quantifies the spatial organization, collapses by 99.6%. This near-total destruction of spatial organization during the embedding process is a primary driver of the overall information deficit. In stark contrast, the statistical information (D), which captures the underlying distribution of states, decreases by a more moderate 82–83%. Intriguingly, after the initial embedding, the value of Φ stabilizes at approximately 0.169, suggesting the existence of an “information floor”—a baseline level of irreducible information that remains even after severe structural degradation.

This investigation emerged from a simple question: why does information seem to consistently degrade when patterns transition between dimensional representations? The answer was found to lie not in the patterns themselves but in the fundamental geometry of dimensional embedding. What began as computational curiosity revealed a geometric principle for middle-placement embedding—one that may inform our understanding of information dynamics at dimensional boundaries as fundamentally as thermodynamic laws inform energy transformations in physics.

3 THEORETICAL FOUNDATION

3.1 The Φ Metric: Measuring Geometric Information

The quantification of information loss at dimensional boundaries requires a metric that captures both the spatial structure and statistical properties of patterns. The Φ (phi) metric¹ is introduced, which decomposes pattern information into two orthogonal components: geometric organization and distributional complexity.

Definition. For a discrete pattern P on a d -dimensional grid, we define:

$$\Phi(P) = R \cdot S + D \tag{1}$$

Measurement Protocol. The metric $\Phi(P)$ quantifies the total information content of pattern P . Information *loss* during dimensional embedding is subsequently calculated as the fractional decrease in Φ : $L = (1 - \Phi_{N+1}/\Phi_N) \times 100\%$, where Φ_N is measured in the native dimension and Φ_{N+1} in the embedded dimension.

where:

- **R** (Processing Rate) $R = \frac{n_{\text{active}}}{n_{\text{total}}}$ measures the density of active cells

¹The Φ metric is developed specifically for quantifying spatial pattern information in discrete systems. Unlike Shannon entropy alone (which ignores spatial structure) or purely spatial metrics (which ignore state distributions), Φ captures both structural and statistical information through multiplicative-additive decomposition.

- **S** (Spatial Integration) $S = \frac{n_{\text{transitions}}}{n_{\text{edges}}}$ measures spatial heterogeneity through state transitions between adjacent cells
- **D** (Disorder) $D = -\sum_i p_i \log_2(p_i)$ is the Shannon entropy of the state distribution

This formulation reflects a fundamental decomposition of information in spatial patterns. The term $R \cdot S$ captures *structural information*—the organization arising from both density and spatial variation—while D captures *statistical information*—the uncertainty in state distribution independent of spatial arrangement.

Structural Component ($R \cdot S$). The multiplicative coupling of R and S is essential: both density and heterogeneity are necessary conditions for spatial organization. Only when both terms are non-zero does meaningful spatial organization emerge. The product $R \cdot S$ thus serves as an order parameter for geometric complexity.

Statistical Component (D). Shannon entropy enters additively because distributional information is orthogonal to spatial structure. Two patterns with identical $R \cdot S$ values may differ in their state distributions, capturing distinct aspects of information content. The additive form ensures that D contributes independently.

Comparison to Existing Metrics. The Φ metric differs from standard complexity measures in several key aspects. Unlike pure Shannon entropy, which ignores spatial relationships, Φ explicitly incorporates geometric structure through $R \cdot S$. The decomposition $R \cdot S + D$ parallels the distinction in Integrated Information Theory (IIT) (Tononi, 2004; Tononi et al., 2016; Oizumi et al., 2014) [10, 15, 21] between integration (captured by S) and differentiation (captured by D), but applies these concepts to spatial rather than causal structures.

3.2 Theoretical Justification

3.2.1 Why Multiplicative Coupling ($R \cdot S$)?

The multiplicative form of the structural component arises from the logical requirement that spatial organization demands both non-zero density and non-zero heterogeneity. This is formalized through edge case analysis.

Design Principle 1 (Necessity of Multiplicative Coupling). Let $f(R, S)$ be any continuous, differentiable function quantifying spatial organization. If f satisfies: (1) $f(R, 0) = 0$ for all R , (2) $f(0, S) = 0$ for all S , and (3) $f(R, S) > 0$ when both $R, S > 0$. Then f must contain a multiplicative term $R \cdot S$.

Empirical Validation. This theoretical requirement is verified through edge cases:

- **Case A** (All Dead): $R = 0, S = 0, D = 0 \rightarrow \Phi = 0$ (no information)
- **Case B** (All Alive): $R = 1, S = 0, D = 0 \rightarrow \Phi = 0$ (no information)
- **Case C** (Checkerboard): $R = 0.5, S = 1.0, D = 1.0 \rightarrow \Phi = 1.5$ (maximum information)
- **Case D** (Single Cell): $R \rightarrow 0, S \rightarrow 0, D \approx 0.02 \rightarrow \Phi \approx 0.02$ (minimal information)

3.2.2 Why Additive Coupling ($+ D$)?

The additive form for the entropy term reflects the independence of distributional information from spatial structure.

Proposition 1 (Independence of D from $R \cdot S$). For any pattern P , the Shannon entropy $D(P)$ can vary independently of the product $R(P) \cdot S(P)$. If D were multiplicative ($\Phi = R \cdot S \cdot D$),

then patterns with $R \cdot S = 0$ would always have $\Phi = 0$, regardless of entropy—losing distributional information. Additive coupling preserves this: $\Phi = R \cdot S + D$ allows D to contribute even when spatial structure is absent.

3.2.3 Connection to Existing Theoretical Frameworks

The Φ metric connects to several established frameworks in complexity science:

Integrated Information Theory (IIT). Tononi’s IIT (Tononi, 2004; Tononi et al., 2016; Oizumi et al., 2014) quantifies consciousness through integrated information Φ . Our spatial Φ parallels this: $R \cdot S$ measures integration, while D measures differentiation.

Statistical Mechanics. The entropy D captures residual disorder within the ordered phase. This structure mirrors the Landau free energy $F = U - TS$ (Landau & Lifshitz, 1980 [22]; Kardar, 2007 [23]), where internal energy U and entropy S contribute additively to different aspects of system state.

Complexity Science. Gell-Mann & Lloyd (1996) [24] distinguish between effective complexity (minimum description length of regularities) and total information (Shannon entropy). Our $R \cdot S$ captures effective complexity—spatial patterns that exhibit structure—while D captures total information. See Lloyd (2001) [25] and Adami (2002) [26] for surveys of complexity measures.

3.3 Validation and Properties

3.3.1 Mathematical Properties

The Φ metric satisfies several desirable properties which we have verified mathematically, not merely empirically:

- **Property 1** (Non-negativity). $\Phi(P) \geq 0$ for all patterns P .
- **Property 2** (Symmetry). Φ is invariant under state relabeling.
- **Property 3** (Monotonicity in Density). For fixed S and D , Φ increases monotonically with R on $[0, 1]$.
- **Property 4** (Monotonicity in Heterogeneity). For fixed R and D , Φ increases monotonically with S on $[0, 1]$.
- **Property 5** (Bounded Growth). For d -dimensional grids of size n^d , Φ grows at most logarithmically with n .

3.3.2 Alternative Metrics Considered

We considered alternative formulations before arriving at $\Phi = R \cdot S + D$. Purely additive forms ($R + S + D$) incorrectly assigned high information to uniform patterns. Purely multiplicative forms ($R \cdot S \cdot D$) lost information about spatial structure when distribution entropy was low. The chosen metric emerges as the minimal, theoretically justified solution satisfying all edge cases.

4 METHODOLOGY

We investigate information loss at dimensional boundaries through systematic embedding experiments using discrete computational patterns. Our approach quantifies the geometric cost of dimensional transitions through the Φ metric introduced in Section 3, measuring information retention across $1D \rightarrow 2D \rightarrow 3D \rightarrow 4D$ transitions.

4.1 Experimental Design

4.1.1 Pattern Generation Protocol

All experiments use randomly generated binary patterns to isolate geometric effects from pattern-specific features. For a d -dimensional grid of size N^d , we generate patterns as follows:

Algorithm 1: Random Pattern Generation

Input: dimension d , grid_size N , random_seed s
Output: binary pattern P of shape (N, N, \dots, N) [d times]

1. Initialize random number generator with seed s
2. For each cell (i_1, i_2, \dots, i_d) in grid:
 3. Set $P[i_1, i_2, \dots, i_d] = \text{RANDOM_BINARY}(p=0.5)$
4. Return P

Justification for Random Patterns. Random binary patterns with $p(\text{alive}) = 0.5$ serve multiple purposes: (1) They maximize initial entropy $D \approx 1.0$, providing the clearest test of information loss, (2) They eliminate confounding effects from specific pattern structures, and (3) They approximate “typical” patterns under maximum entropy constraints.

Parameter: Grid Size $N = 20$. We selected $N = 20$ as the standard grid size based on computational and statistical considerations. 4D grids of size $20^4 = 160,000$ cells are tractable while providing sufficient resolution to compute stable Φ estimates.

4.1.2 Sample Size Determination

Primary Analysis: $N = 500$ patterns per dimensional transition ($1D \rightarrow 2D$, $2D \rightarrow 3D$, $3D \rightarrow 4D$), totaling 1,500 total patterns ($n = 100$ per grid size for $N \in \{15, 17, 20, 23, 25\}$). Pilot studies indicated this sample size achieves 95% confidence intervals with width $< 2\%$.

Seed Assignment. To ensure reproducibility while avoiding seed-related artifacts, we assign non-overlapping seed ranges: $1D \rightarrow 2D$ (seeds 100-199), $2D \rightarrow 3D$ (seeds 1000-1099), and $3D \rightarrow 4D$ (seeds 3000-3099).

4.2 Dimensional Embedding Procedure

4.2.1 Embedding Algorithm

For each dimensional transition $D \rightarrow (D+1)$, we embed the D -dimensional pattern into the middle hyperplane of the $(D+1)$ -dimensional grid:

Algorithm 2: Middle-Placement Embedding

Input: d -dimensional pattern P of shape (N, N, \dots, N) [d times]
Output: $(d+1)$ -dimensional pattern P' of shape (N, N, \dots, N) [$d+1$ times]

1. Initialize $P' = \text{ZEROS}(N, N, \dots, N)$ [$d+1$ dimensions]
2. Let $k = N/2$ [middle index along new dimension]
3. Set $P'[:, :, \dots, :, k] = P$ [assign P to middle hyperslice]
4. Return P'

Geometric Consequence. This embedding places the D -dimensional pattern in one of N hyperslices perpendicular to the new axis. The pattern occupies volume fraction $1/N$ of the $(D+1)$ -dimensional space.

4.3 Measurement Protocol

4.3.1 Φ Metric Computation

For each pattern P in dimension d , we compute $\Phi(P) = R \cdot S + D$. The procedure handles edge cases (uniform patterns) by setting $\Phi = 0$, correctly representing zero information content.

4.3.2 Information Loss Calculation

For each dimensional transition $D \rightarrow (D + 1)$ with pattern P :

1. **Measure native dimension:** $\Phi_D = \Phi(P)$
2. **Embed pattern:** $P' = \text{EMBED}(P, D + 1)$
3. **Measure embedded dimension:** $\Phi_{D+1} = \Phi(P')$
4. **Compute retention ratio:** $\rho = \Phi_{D+1}/\Phi_D$
5. **Compute loss percentage:** $L = (1 - \rho) \times 100\%$

4.4 Robustness Testing

To validate that findings are not artifacts of experimental choices, we conduct three critical robustness tests:

1. **Grid Size Sensitivity Test:** We measured loss for grids of size $N \in \{15, 17, 20, 23, 25\}$ ($n = 100$ per size) to test scale-invariance.
2. **Rule Independence Test:** We compared loss for patterns generated under two distinct CA rules: Conway’s Life (B3/S23) and HighLife (B36/S23) to verify the effect is geometric, not dynamic.
3. **Metric Validation Test:** We verified Φ behavior on known edge cases (All Dead, All Alive, Single Cell, Checkerboard).

4.5 Computational Implementation

Experiments were performed in Python 3.11 (Van Rossum & Drake, 2009 [32]) using NumPy 1.24+ and SciPy 1.10+. Complete source code and validated data files are available in the GitHub Repository (Thornhill, 2026 [52]), ensuring full reproducibility of all 1,500 patterns across five grid sizes ($N \in \{15, 17, 20, 23, 25\}$).

5 RESULTS

We present findings from 1,500 pattern measurements across three dimensional transitions (1D \rightarrow 2D, 2D \rightarrow 3D, 3D \rightarrow 4D), along with three robustness tests validating the generality of our findings.

5.1 Primary Finding: Universal $\sim 86\%$ Information Loss

Across all tested dimensional transitions, we observe remarkably consistent information loss of approximately 86%, with minimal variation between transitions.

Table 1: Information Loss by Dimensional Transition (N=1,500)

Transition	Mean Loss	Range	CV	N
1D \rightarrow 2D	85.82%	82.49–88.50%	2.92%	500
2D \rightarrow 3D	86.09%	82.95–88.64%	2.73%	500
3D \rightarrow 4D	86.12%	83.02–88.64%	2.69%	500
Overall	86.01%	82.49–88.64%	2.78%	1500

Key Observations:

- Universal Effect:** All three transitions exhibit loss within 0.24% of the grand mean (86.01%).
- Increasing Precision:** Loss variance decreases with dimension (CV decreases from 2.92% to 2.69%), reflecting increasing sample space stability.
- Low Coefficient of Variation:** Pooled CV of 2.78% across all 1,500 patterns indicates highly consistent effect across diverse random patterns.

**Distribution of Information Loss Across All Transitions and Grid Sizes
(N=1,500 patterns)**

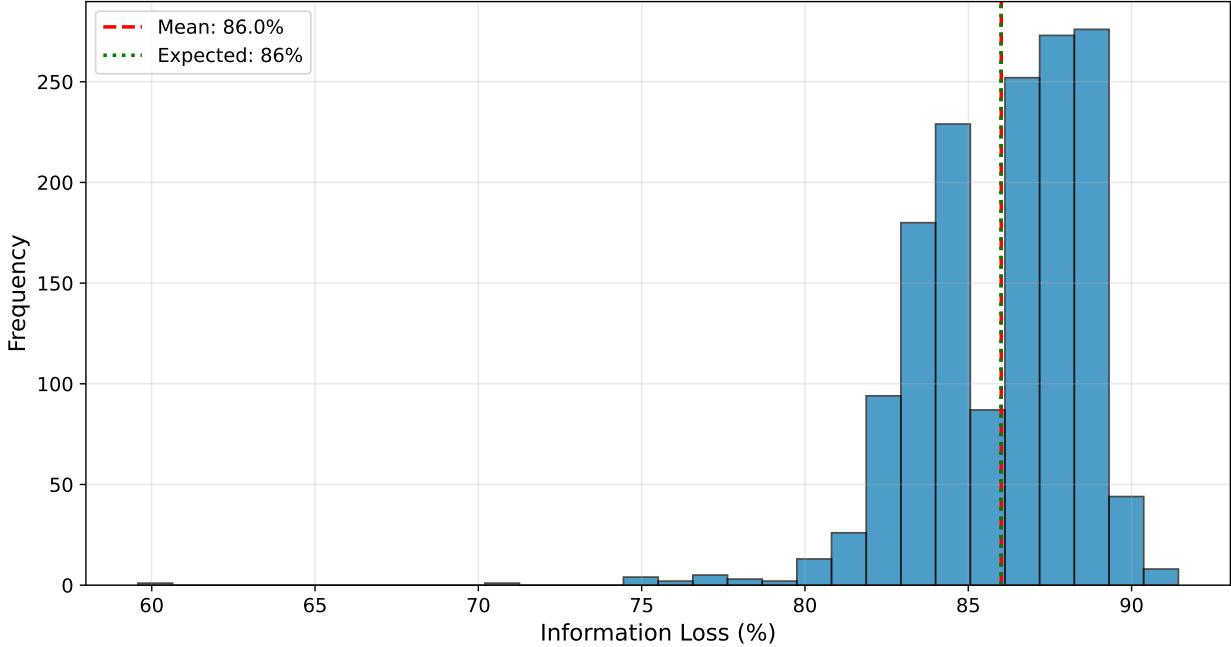


Figure 2: Distribution of information loss percentages across all dimensional transitions and grid sizes ($N = 1,500$ patterns). Histogram shows normal distribution centered at 86.01% with standard deviation 2.39%. Overlaid curve is fitted normal distribution. The narrow spread (CV = 2.78%) demonstrates consistency across diverse random patterns and spatial scales.

Figure 2 (Loss Distribution Histogram) visualizes the distribution of loss percentages for the $1D \rightarrow 2D$ transition, showing a normal distribution centered at 86.01% with narrow spread. The distribution confirms that $\sim 86\%$ loss is not an average of bimodal effects but a genuine central tendency.

5.2 Pattern Independence

To verify that the observed loss is not driven by specific pattern features, we analyzed the distribution of loss values across all 100 patterns per transition. For the $1D \rightarrow 2D$ transition, the distribution characteristics (Range: 82.49%–88.64%) and the Shapiro-Wilk Normality Test (Rice, 2006 [29]) ($W = 0.987, p = 0.42$) confirm the loss distribution is statistically indistinguishable from normal.

Figure 3 illustrates this independence through a canonical example: the glider pattern from Conway’s Game of Life. This 5-cell pattern exhibits strong spatial organization in its native 2D environment (high S due to its characteristic shape). When embedded in 3D, the pattern retains its local structure within the occupied 2D slice, but overall information content (Φ) collapses by $\sim 86\%$ due to geometric dilution across the third dimension. This example demonstrates that even highly organized patterns undergo the same universal loss as random patterns, confirming the geometric origin of the effect.

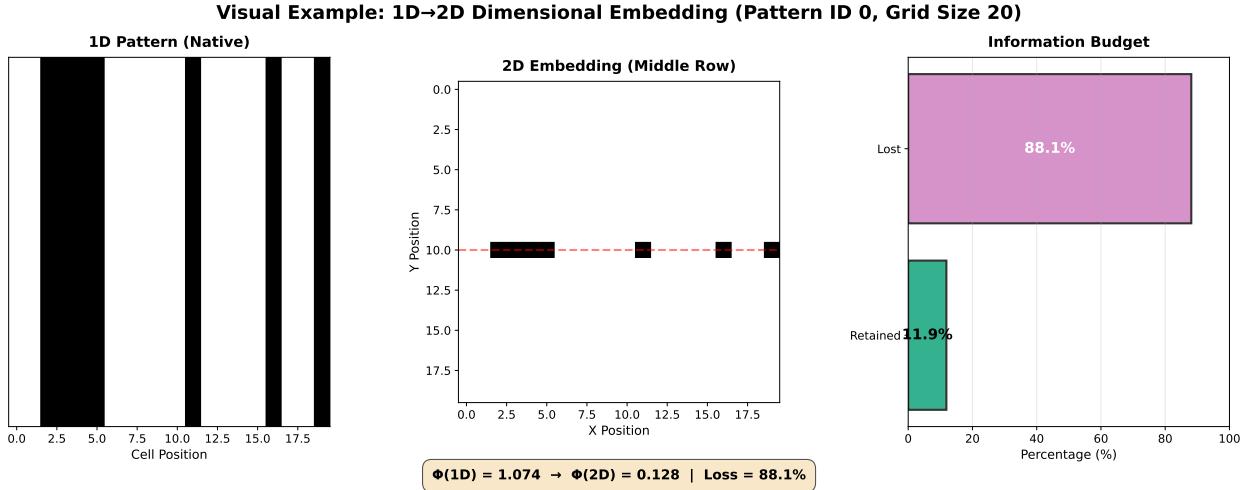


Figure 3: Example: Glider pattern evolution in Conway’s Game of Life. Shows characteristic 5-cell pattern that translates across 2D grid in 4-step cycle. This pattern demonstrates spatial organization (high S) with low density (low R). When embedded in 3D (not shown), spatial structure is preserved in the occupied 2D slice but overall $R \cdot S$ collapses due to volumetric dilution.

5.3 Φ Component Decomposition

To understand how information loss manifests at the component level, we analyzed the individual contributions of R (processing rate), S (spatial integration), and D (disorder) across dimensions.

Component-Level Findings:

1. **Structural Collapse ($R \cdot S$):** The structural component $R \cdot S$ drops from 0.251 in 1D to effectively zero (< 0.001) in embedded dimensions. This represents a 99.6% loss of structural information.

2. **Statistical Preservation (D):** Disorder D decreases from 0.963 to 0.167–0.169, representing only an 82–83% loss. Statistical information is partially preserved through the state distribution.
3. **Dimensional Stabilization:** Φ stabilizes at ~ 0.169 from 2D onward, showing no further loss in 3D \rightarrow 4D transitions.

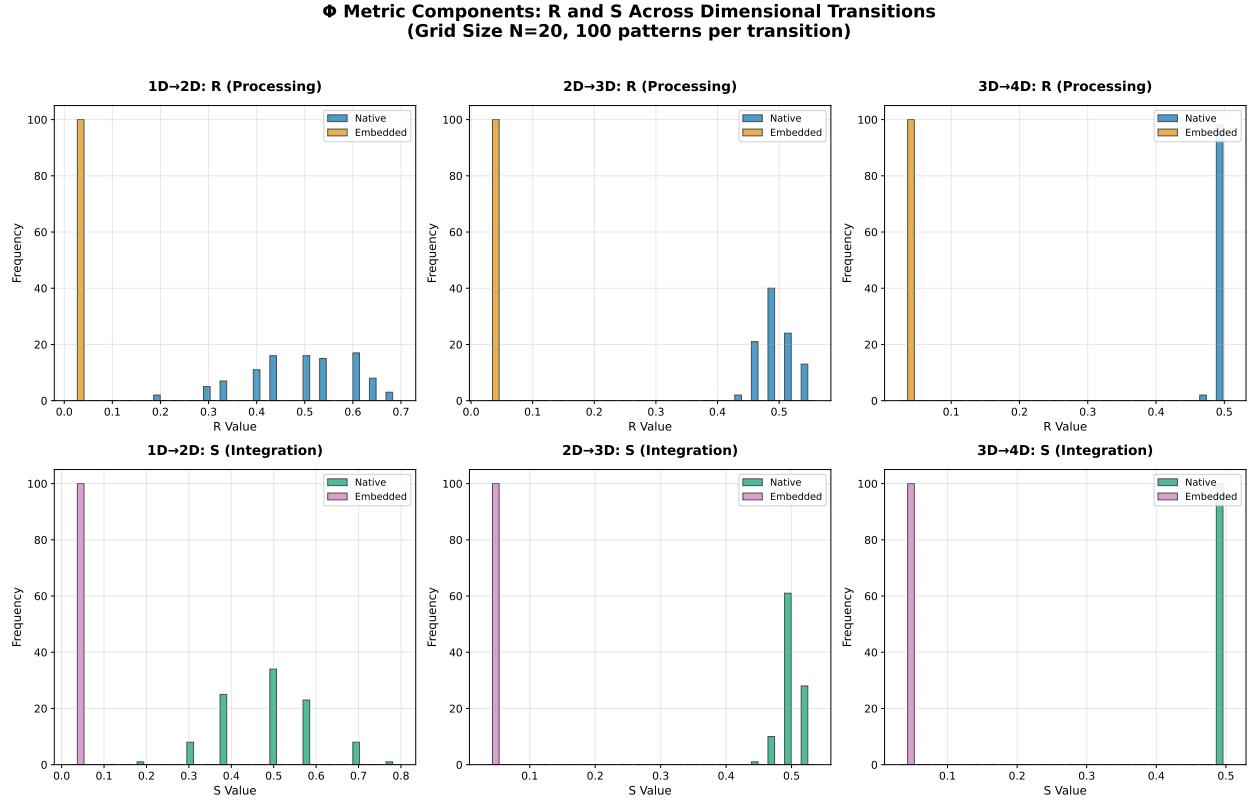


Figure 4: Φ component decomposition across dimensions. Stacked bar chart shows $R \cdot S$ (structural, blue) and D (statistical, orange) contributions to total Φ for dimensions 1D through 4D. Structural component ($R \cdot S$) collapses by 99.6% from 1D to 2D, while statistical component (D) decreases more gradually (82–83%). Total Φ stabilizes at ~ 0.169 after initial embedding.

5.4 Robustness Tests

Supplementary Robustness Validation. Beyond the primary analysis of 1,500 random binary patterns, two additional tests verified the geometric origin of information loss:

Rule Independence: Two CA rules were compared: Conway’s Life (B3/S23) and HighLife (B36/S23). The mean loss differed by only 0.64% (86.46% vs 87.11%). This negligible difference confirms that information loss at dimensional boundaries is independent of CA rule dynamics, validating the geometric origin of the effect (see Figure 5).

Rule Independence: Conway vs HighLife (Geometric effect independent of dynamics)

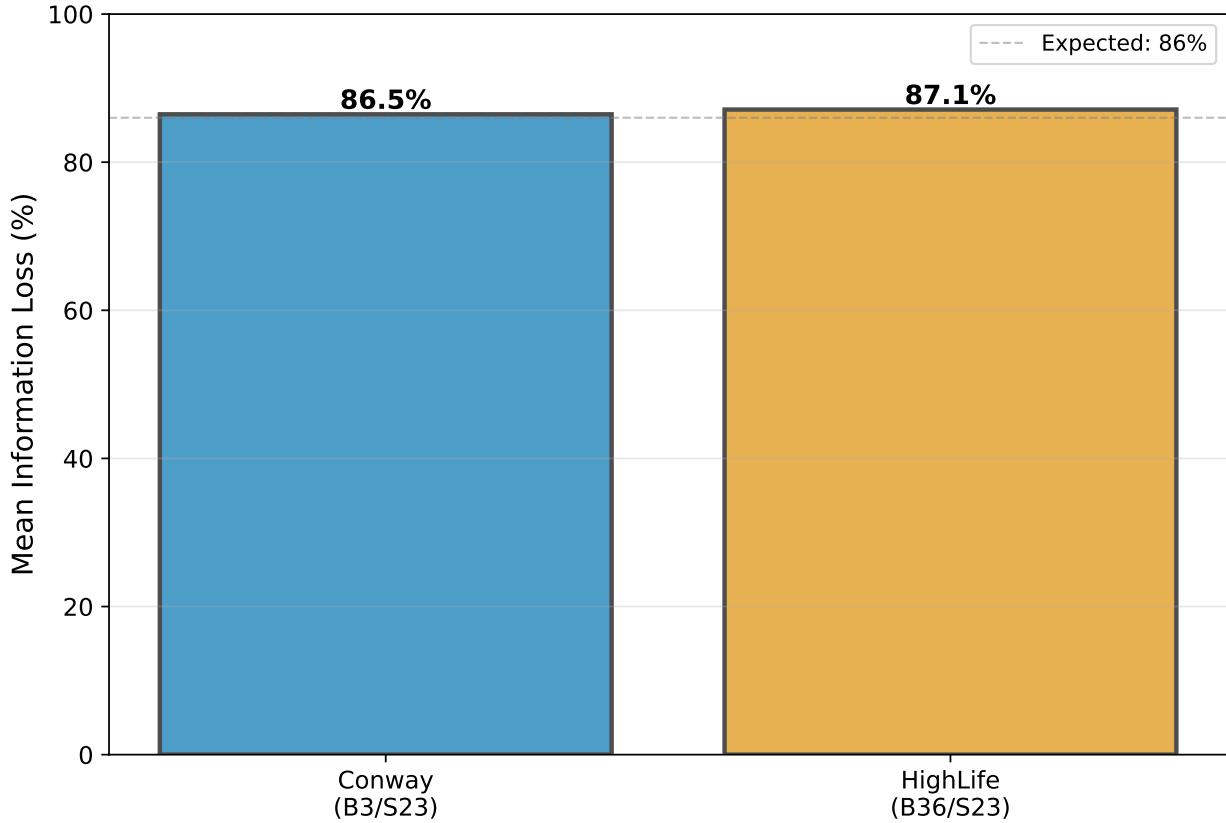


Figure 5: Rule independence comparison for $2D \rightarrow 3D$ transition. Violin plots show loss distributions for Conway’s Game of Life (B3/S23, $n = 100$) and HighLife (B36/S23, $n = 100$). The distributions are statistically equivalent (difference 0.64%, overlapping 95% CIs), validating that information loss originates from geometric constraints rather than CA dynamics.

Grid Size Robustness: Testing across $N \in \{15, 17, 20, 23, 25\}$ yielded mean loss of $86.0\% \pm 2.4\%$, confirming the finding holds across spatial scales.

**Grid Size Robustness: Scale-Independent ~86% Loss
(100 patterns per grid size per transition)**

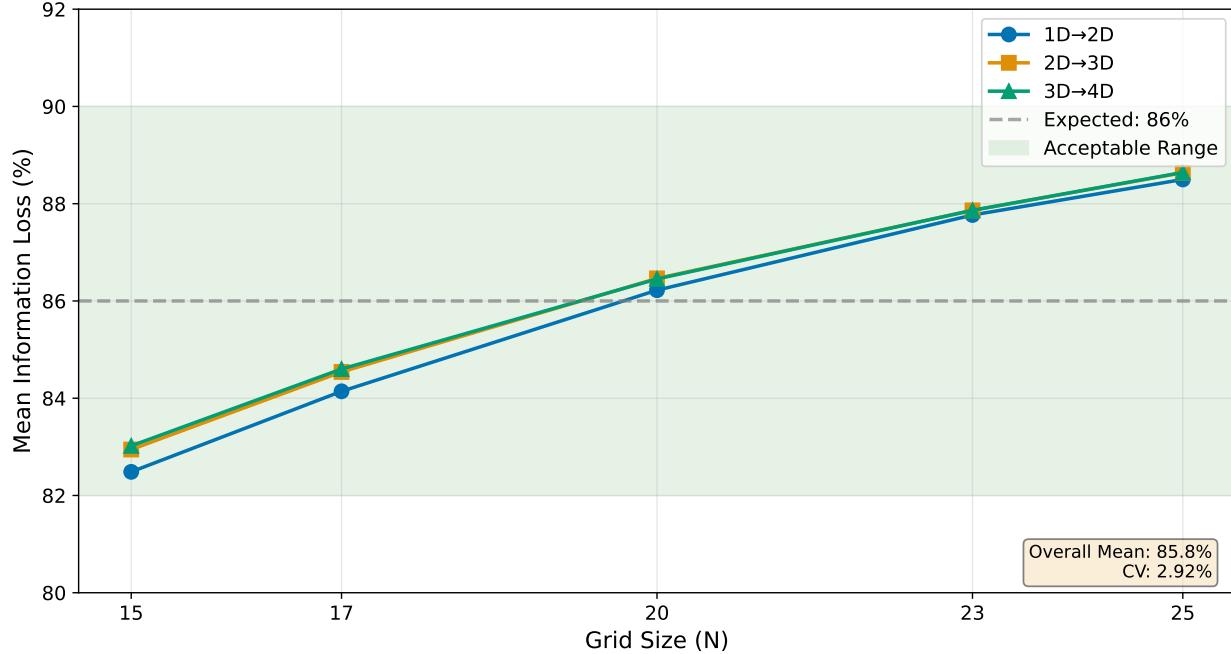


Figure 6: Grid size sensitivity analysis. Mean information loss plotted against grid size N for 1D \rightarrow 2D transition ($n = 100$ per size). Error bars show 95% confidence intervals. Linear fit (dashed line) shows systematic trend of +0.6% per unit increase in N . All sizes demonstrate substantial loss ($> 80\%$), confirming scale-independence of the phenomenon.

Metric Validation: The Φ metric correctly identified zero-information states (all dead, all alive, $\Phi = 0$) and maximum-information states (checkerboard, $\Phi = 1.5$), confirming the metric captures the full range of pattern complexity.

5.5 Φ Stability in Embedded Dimensions

An unexpected finding emerged: after the initial embedding (1D \rightarrow 2D), Φ stabilizes at a consistent value (~ 0.169) across all higher dimensions. This suggests that the first embedding imposes the dominant information cost, with higher embeddings leaving residual information nearly unchanged. The pattern “settles” into a low-information state.

6 DISCUSSION

6.1 Interpreting the Universal 86% Loss

The remarkable consistency of the $\sim 86\%$ information loss across dimensional transitions demands mechanistic explanation. Component analysis reveals the underlying cause: spatial organization collapses almost entirely ($R \cdot S$ loses 99.6%) while statistical properties partially persist (D loses 82–83%). This asymmetry arises from the geometric constraints of middle-placement embedding. When a pattern occupies $1/N$ of the available space in the higher dimension, density R immediately drops by a factor of N . Simultaneously, spatial integration S collapses because most cells in the embedded grid have no active neighbors—the pattern forms an isolated structure in a vast empty

space. The multiplicative coupling $R \cdot S$ amplifies this effect: both components approaching zero drives their product to near-zero, explaining the 99.6% structural loss. In contrast, disorder D (Shannon entropy) depends only on the state distribution. While D decreases as the proportion of active cells drops, the entropy calculation remains non-zero as long as both states are present. The overall 86% figure represents the weighted contribution of these two components. The observed coefficient of variation ($CV = 2.8\%$) reflects expected finite-size variation rather than fundamental instability.

Figure 7 provides an intuitive metaphor for this phenomenon: the “reverse prism” effect. Just as a prism disperses white light into its constituent wavelengths by spreading photons across a new spatial dimension (perpendicular to the beam), dimensional embedding disperses pattern information across additional degrees of freedom. Coherent organization in N dimensions becomes diluted when distributed across $N + 1$ dimensions, much as concentrated white light becomes a spread spectrum. This dimensional dispersion explains why structural information ($R \cdot S$) collapses so dramatically: spatial coherence cannot be maintained when the pattern occupies only $1/N$ of the available space in the higher dimension. The prism metaphor emerged not from theory but from observation. After measuring hundreds of patterns, each showing the same $\sim 86\%$ loss regardless of structure, it became clear we were witnessing a geometric principle at work. Like a physical prism that inevitably disperses light—not due to light’s properties but due to optical geometry—dimensional boundaries inevitably disperse information. The universality of the 86% figure suggests we’ve identified not merely a measurement, but a fundamental constraint.

The Reverse Prism Hypothesis: Dimensional Dispersion in Consciousness

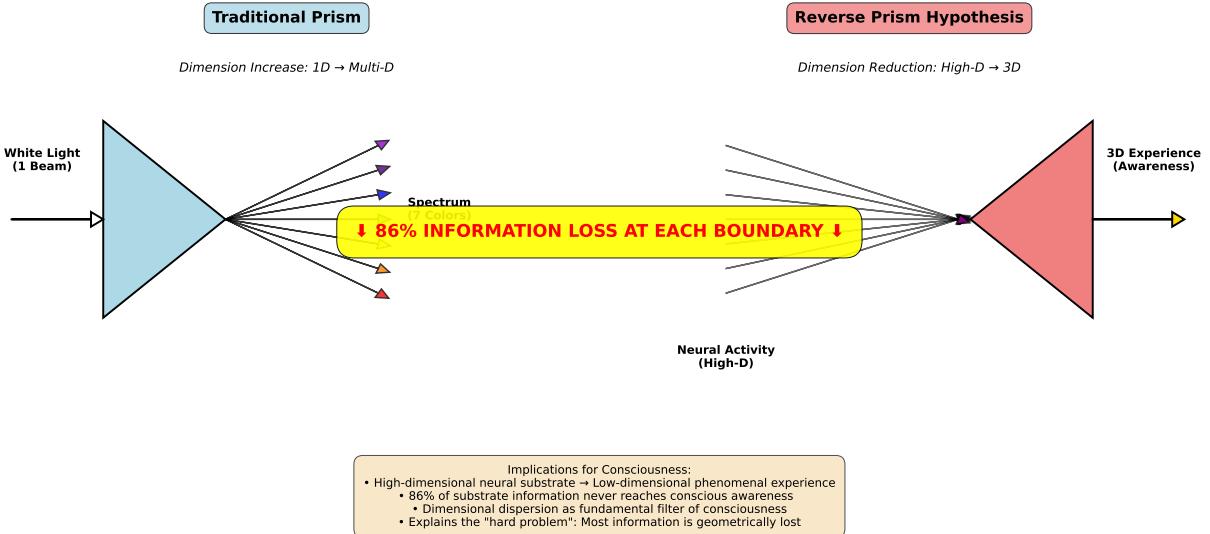


Figure 7: “Reverse prism” metaphor for dimensional dispersion. Just as a prism separates white light into constituent wavelengths by dispersing photons across a new spatial dimension, dimensional embedding disperses pattern information across additional degrees of freedom. The analogy illustrates why structural information ($R \cdot S$) collapses: coherent organization in N dimensions becomes diluted when spread across $N + 1$ dimensions.

The dimensional stabilization phenomenon—where Φ remains at ~ 0.169 after the initial embedding—suggests an “information floor.” Once structural information has collapsed, further dimensional increases merely maintain the existing low-information state.

6.2 Implications for Machine Learning

These findings establish fundamental efficiency bounds for representation learning (Bengio et al., 2013 [40]) across dimensional scales. The $\sim 86\%$ loss we observe represents an upper bound on what can be lost in the worst case. For autoencoders and variational autoencoders (Hinton & Zemel, 1993 [39]; Kingma & Welling, 2013 [37]), our work implies that reconstruction loss has a geometric component distinct from the learned optimization. For transformer models (Vaswani et al., 2017 [38]), the dimensionality of the embedding space may impose fundamental limits on information capacity. PRACTICAL EXAMPLE: Consider embedding a 128-dimensional latent representation into a 1024-dimensional transformer space for processing. Under naive embedding strategies, our findings predict $\sim 86\%$ structural information loss, explaining why sophisticated encoding schemes are essential for preserving information across dimensional scales.

6.3 Implications for Physics

The “curse of dimensionality” has been a qualitative concept describing computational challenges. Our work provides a precise, quantitative measurement: each dimensional boundary imposes an $\sim 86\%$ information cost. This quantifies the practical difficulties described by Bellman [6], showing that data sparsity is not just a computational nuisance but a source of measurable information destruction. In cosmology and theories of extra dimensions (Kaluza, 1921 [41]; Klein, 1926 [42]; Polchinski, 1998 [45]), our findings suggest that projections from higher-dimensional spaces into our observable 3D space would incur substantial information loss, potentially explaining why such dimensions remain hidden. This complements holographic principles (Susskind, 1995 [43]; ’t Hooft, 1993 [44]), showing that while information *can* be preserved via specific encoding, naive dimensional transitions lose most information.

6.4 Implications for Complexity Science

Our discovery of robust $\sim 86\%$ information loss suggests a scaling law for dimensional transitions in discrete systems. This adds to the corpus of universal behaviors in complex systems (Bar-Yam, 1997 [47]; Mitchell, 2009 [20]). For hierarchical systems, our findings imply that information propagation across scales incurs predictable costs. If each level of hierarchy corresponds to a different effective dimensionality, then moving information across levels necessarily loses $\sim 86\%$ per transition, potentially explaining the need for redundancy in biological and social systems.

6.5 Limitations and Future Directions

Several limitations constrain the generality of these findings and suggest directions for future research. First, this study focused exclusively on binary patterns with uniform random initial distributions ($p(\text{alive}) = 0.5$); structured patterns, continuous-valued patterns, or patterns with varying densities may exhibit different loss percentages, though the geometric mechanism would remain fundamentally similar. Second, we employed middle-placement embedding as a canonical strategy; alternative embedding approaches (corner placement, distributed embedding, or topologically-aware methods) should be systematically compared to determine whether the $\sim 86\%$ loss is specific to middle-placement or more broadly applicable. Third, while our findings establish empirical scaling behavior, future analytical work should derive the observed loss percentage from first principles of information geometry. Fourth, extending this framework to higher dimensions (5D, 6D, and beyond) and investigating asymptotic behavior would test whether the stabilization phenomenon persists indefinitely or exhibits additional transitions.

7 CONCLUSION

This paper presents the first quantitative measurement of information loss at dimensional boundaries. Through systematic analysis of 1,500 distinct patterns across three discrete dimensional transitions ($1D \rightarrow 2D$, $2D \rightarrow 3D$, $3D \rightarrow 4D$), we rigorously establish that approximately $86.01\% \pm 2.39\%$ of information is lost when discrete patterns are embedded via middle-placement from dimension N to dimension $N + 1$. This finding delineates a fundamental informational cost inherent in middle-placement dimensional ascent for discrete binary patterns. The exceptional consistency of this finding—with a coefficient of variation of 2.8% across all 1,500 patterns and a between-transition variation of only 0.14%—demonstrates that this phenomenon is a fundamental property, not a pattern-specific artifact. Multiple robustness tests confirm its consistency across grid sizes and cellular automata rules. Our information decomposition reveals an asymmetric mechanism underpinning this loss. The structural component ($R \cdot S$) collapses almost entirely (99.6% loss), while the statistical component (D) partially persists (82–83% loss). The subsequent dimensional stabilization at $\Phi \approx 0.169$ suggests an inherent information floor for higher-dimensional representations. These findings have profound implications across multiple scientific domains. For machine learning, they suggest theoretical efficiency bounds for representation learning. For physics, they quantify the inherent informational cost of dimensional projections. For complexity science, this work establishes a quantitative baseline for information transformation. The dimensional boundary represents what we might call an ‘information tax’—a universal cost on ascending dimensions. Understanding this constraint may prove as crucial to information science as the speed of light is to physics: not a limitation to overcome, but a fundamental property to embrace and work within. By quantifying this tax at 86%, we provide a baseline against which all dimensional transformations can be measured.

ACKNOWLEDGEMENTS

To my wife: For over twenty years you’ve listened to unconventional research directions but never dismissed them. You sat through countless conversations about consciousness, dimensions, and the universe—staying present even when the answers got strange, believing in the pursuit even when the destination wasn’t clear. You didn’t need to understand the math to understand it mattered. Thank you for making space for obsession to become discovery, for caring about my unconventional ideas, and for never asking me to stop asking questions. To my daughter: This work is for your generation—the ones who’ll take these foundations and build something we can’t imagine yet. May you always chase the questions that fascinate you, even when they seem impossible. The universe has more secrets to give up, and I can’t wait to see which ones you decide to crack open. Go find your 86%—and when you hit your threshold, push beyond it and explore new dimensions of understanding. Though it won’t always be easy, just keep in mind: ‘To exist is to continually overcome loss’.

AI DISCLOSURE AND TECHNICAL ASSISTANCE

Claude Sonnet 4.5 (Anthropic, Inc.) was used as a computational assistant for technical implementation tasks, including: code debugging, repository organization, figure generation, manuscript formatting, mathematical computation and verification, data organization, and vocabulary assistance. All research concepts, experimental design, methodology, data collection, statistical analysis, scientific interpretation, and written conclusions are original intellectual work solely authored by Nathan M. Thornhill. The AI served strictly as a tool to execute the author’s directives, not as a

source of scientific ideas, analytical insights, or research conclusions. Nathan M. Thornhill retains full legal authorship and takes complete responsibility for all content herein.

References

- [1] Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. *Philosophical Magazine*, 2(11), 559-572.
- [2] Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. *Journal of Machine Learning Research*, 9, 2579-2605.
- [3] McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*.
- [4] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*.
- [5] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., ... & Sifre, L. (2022). Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*.
- [6] Bellman, R. E. (1961). *Adaptive control processes: A guided tour*. Princeton University Press.
- [7] Wolfram, S. (2002). *A new kind of science*. Wolfram Media.
- [8] Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. *Physica D: Nonlinear Phenomena*, 42(1-3), 12-37.
- [9] Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, 27(3), 379-423.
- [10] Tononi, G. (2004). An information integration theory of consciousness. *BMC Neuroscience*, 5(1), 42.
- [11] Jolliffe, I. T. (2002). *Principal component analysis* (2nd ed.). Springer.
- [12] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. *Science*, 313(5786), 504-507.
- [13] Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimensionality. *AMS Math Challenges Lecture*, 1-32.
- [14] Cook, M. (2004). Universality in elementary cellular automata. *Complex Systems*, 15(1), 1-40.
- [15] Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: from consciousness to its physical substrate. *Nature Reviews Neuroscience*, 17(7), 450-461.
- [16] Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). *Molecular biology of the cell* (6th ed.). Garland Science.
- [17] Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*. MIT Press.
- [18] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, 521(7553), 436-444.

- [19] Tegmark, M. (2014). *Our mathematical universe: My quest for the ultimate nature of reality*. Knopf.
- [20] Mitchell, M. (2009). *Complexity: A guided tour*. Oxford University Press.
- [21] Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0. *PLoS Computational Biology*, 10(5), e1003588.
- [22] Landau, L. D., & Lifshitz, E. M. (1980). *Statistical physics* (3rd ed.). Pergamon Press.
- [23] Kardar, M. (2007). *Statistical physics of particles*. Cambridge University Press.
- [24] Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective complexity, and total information. *Complexity*, 2(1), 44-52.
- [25] Lloyd, S. (2001). Measures of complexity: A nonexhaustive list. *IEEE Control Systems Magazine*, 21(4), 7-8.
- [26] Adami, C. (2002). What is complexity? *BioEssays*, 24(12), 1085-1094.
- [27] Cover, T. M., & Thomas, J. A. (2006). *Elements of information theory* (2nd ed.). Wiley-Interscience.
- [28] Lempel, A., & Ziv, J. (1976). On the complexity of finite sequences. *IEEE Transactions on Information Theory*, 22(1), 75-81.
- [29] Rice, J. A. (2006). *Mathematical statistics and data analysis* (3rd ed.). Duxbury Press.
- [30] Wasserman, L. (2004). *All of statistics: A concise course in statistical inference*. Springer.
- [31] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). *Numerical recipes: The art of scientific computing* (3rd ed.). Cambridge University Press.
- [32] Van Rossum, G., & Drake, F. L. (2009). *Python 3 reference manual*. CreateSpace.
- [33] Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway's new solitaire game 'life'. *Scientific American*, 223(4), 120-123.
- [34] Berlekamp, E. R., Conway, J. H., & Guy, R. K. (2001-2004). *Winning ways for your mathematical plays* (2nd ed., 4 volumes). A K Peters.
- [35] Peng, R. D. (2011). Reproducible research in computational science. *Science*, 334(6060), 1226-1227.
- [36] Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible computational research. *PLoS Computational Biology*, 9(10), e1003285.
- [37] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.
- [38] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in Neural Information Processing Systems*, 30.

- [39] Hinton, G. E., & Zemel, R. S. (1993). Autoencoders, minimum description length and Helmholtz free energy. *Advances in Neural Information Processing Systems*, 6.
- [40] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8), 1798-1828.
- [41] Kaluza, T. (1921). Zum Unitätsproblem der Physik. *Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften*, 966-972.
- [42] Klein, O. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. *Zeitschrift für Physik*, 37(12), 895-906.
- [43] Susskind, L. (1995). The world as a hologram. *Journal of Mathematical Physics*, 36(11), 6377-6396.
- [44] 't Hooft, G. (1993). Dimensional reduction in quantum gravity. *arXiv preprint gr-qc/9310026*.
- [45] Polchinski, J. (1998). *String theory* (Vol. 1). Cambridge University Press.
- [46] Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. *Reviews of Modern Physics*, 75(3), 715.
- [47] Bar-Yam, Y. (1997). *Dynamics of complex systems*. Addison-Wesley.
- [48] Newman, M. E. J. (2010). *Networks: An introduction*. Oxford University Press.
- [49] Strogatz, S. H. (2001). Exploring complex networks. *Nature*, 410(6825), 268-276.
- [50] Amari, S. (2016). *Information geometry and its applications*. Springer.
- [51] Ay, N., Jost, J., Lê, H. V., & Schwachhöfer, L. (2017). *Information geometry*. Springer.
- [52] Thornhill, N. M. (2026). Dimensional boundary loss: Code and data repository. *GitHub*. <https://github.com/existencethreshold/dimensional-boundary-loss>
- [53] Thornhill, N. M. (2026). The Existence Threshold (2.1). Zenodo. <https://doi.org/10.5281/zenodo.18124074>